Project Four
LCD Display


References
Section 7.6
LCD Display

Section 8.5
Display strings

Section 8.7
Display of Constant Strings

Example file
LED.asm

Information file
Character codes.tif

Project Description
For this project, your code for Project Three should continue to work.  In addition, initially display the following message, centered on the top line of the display:

Press ENTER

When the ENTER key is pressed, display the names of you and your lab partner, again centered on the display. When the ENTER key is released, redisplay the initial message.  Update the display when ENTER is changed.

LED.asm File
When this file is assembled and executed by the PIC on the PIC Education Board, it will write UL in the upper-left-hand corner of the display, UR in the upper-right-hand corner of the display, LL in the lower-left-hand corner of the display, and LR in the lower-right-hand corner of the display.  Try it.

Book versus PIC Education Board Differences
The Hitachi LCD display discussed in Section 7.6 uses the PIC=s Serial Peripheral Interface (SPI) and a 74HC164 shift register to acquire bytes from the PIC eight bits at a time.  The FEMA LCD display on the board uses the upper four bits of PORTB to acquire bytes from the PIC two four-bit nibbles at a time.  While both the Hitachi and the FEMA displays can employ either a four-bit or an eight-bit interface to the PIC, the initialization required for the four-bit interface is somewhat different from that for the eight-bit interface.  Furthermore, you will note that the LED.asm file=s Initial, InitLCD, LCDinit_Table, DisplayC, DisplayC_Table, and T40 subroutines are somewhat different from the corresponding subroutines in the book, mainly because of the four-bit interface.

Another set of differences arises because Hitachi displays (and most other LCD character displays) employ an HD44780U Hitachi controller chip and other parts mounted with the display on a PC board module.  In contrast, the FEMA display uses a tiny FCS2314AK Fujitsu controller chip mounted right on the glass substrate of the LCD display itself.  By the time Fujitsu made their controller chip, the technology had advanced such that what had been a board of parts for Hitachi was now designed as a special purpose microcontroller by Fujitsu.  Functionally, the Fujitsu unit is an upwardly compatible extension of the Hitachi unit.  It understands all of the Hitachi commands. While I have not been able to find the Fujitsu data sheet on the internet, the Hitachi HD44780U data sheet can be found by going to Hitachi=s web page (http://semiconductor.hitachi.com/)  and then searching for HD44780U.  This data sheet will correctly answer most questions concerning our display.

The 5x7 characters displayed for all of the ASCII codes shown in Figure 7-9 on page 138 are the same.  The complete character set is shown in the attached Character codes.tif file.  This Fujitsu unit includes characters that are useful for making an 80-element horizontal bargraph display extending horizontally across one of the rows of what is normally a 16x2 character display. Likewise, it includes characters that can be used to make a 14-element vertical bargraph display using any two characters located in the same column. 

Initial Subroutine
Your Initial subroutine must be terminated by calling the InitLCD subroutine last thing  (just before the Areturn@ instruction is executed).  By that point, the ports and the LoopTime subroutine needed by the InitLCD subroutine will have been set up correctly.

InitLCD and LCDinit_Table Subroutines
The InitLCD subroutine first pauses for a quarter of a second because both the Fujitsu controller chip and the PIC have a power-on reset circuit.  The quarter-second pause insures that when the PIC starts to execute the code which will initialize the LCD display, the Fujitsu controller will be out of reset, ready to accept commands.

The subroutine next calls the LCDinit_Table subroutine with LCD_TEMP = 0.  This subroutine adds the zero to the program counter and jumps to the very first retlw instruction, returning with H’33’ in W.  Each subsequent time LCDinit_Table is called, it will be with LCD_TEMP incremented by one.  In this way the InitLCD subroutine gets byte after byte from the string of bytes stored via the successive retlw instructions in LCDinit_Table.  When the byte retrieved equals zero, the end of the string has been reached.

The display is initialized to the nibble mode (whereby subsequent bytes are received as two successive 4-bit nibbles) by sending each of the nibbles of the first two bytes (i.e., 3 - 3 - 3 - 2) interspersed with the strobing of the display=s E pin and a pause to allow each nibble to be digested.  The RS pin of the display is held low for all nibble transfers, telling the display that these are commands, not displayable characters.  Subsequent nibbles are paired together into bytes by the display.  These four bytes tell the display controller that it is controlling a two-row display that is to be blanked initially and that it is not to display a cursor.  The display controller is also told that a string of displayable characters received by the display is to be written from left to right across the display.  

DisplayC and DisplayC_Table Subroutines
The DisplayC subroutine has a parameter passed to it in W which represents an offset from the CDS label in the DisplayC_Table subroutine to the beginning of the string of characters that will form a fixed message on the display.  Each of the characters in the string is stored as part of an retlw instruction.  For example, the _UR label identifies the beginning of a display string having the format described in Section 8.5 on page 149:

Cursor-positioning code 

ASCII string of characters to be displayed

End-of-string designator, H’00’

For the _UR label, this becomes

C0
The cursor-positioning code which will place the cursor at the first column of the second row of the 16x2 display. The cursor-positioning codes for every character position are shown in Figure 7-8 on page 137 for rows 1 and 2 and columns 1 to 16.

55
This is the ASCII code for the upper-case letter U.  The dt assembler directive tells the assembler to convert the characters between the quotes to their corresponding ASCII codes and to embed them into retlw instructions.  The ASCII table shown in Figure 7-9 on page 138 shows U being coded as 0101 0101 which is the same as hex 55.

52
This is the ASCII code for R.

00
This is the end-of-string designator.

The DisplayC subroutine employs a loop of instructions.  Each time around the loop, the next byte in the string is returned by the DisplayC_Table subroutine.  The display receives the first byte with its RS (register select) input low.  This signifies to the display that the C0 byte is to be treated as a control byte, to set the position where the subsequent characters are to be displayed.  At the end of the first time around the loop, the RS input is set to one so that all subsequent characters sent to the display are treated as displayable characters, not control codes.  

Modification of DisplayC_Table
The strings you are to display for this project will be known at the time of assembly (e.g., “Press ENTER”).  That is, they are constant, or fixed, strings.  You need to create a new display string in the DisplayC_Table subroutine for each one of them, with a label to name each string (e.g., “_Press”) and the appropriate sequence of retlw instructions to handle each byte of the string.  Then to display the new string, your mainline code will execute an instruction sequence analogous to 

movlw
_Press-CDS

call
DisplayC

Use of Enter Switch
Note that this switch is connected to bit 2 of PORTE.  When the switch is pressed, a zero is sensed on this pin.


ADVANCE \d2Project Four
LCD Display
Page 2 of 2

